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Abstract—This paper focuses on predicting downlink (DL)
traffic volume in mobile networks while minimizing overpro-
visioning and meeting a given service-level agreement (SLA)
violation rate. We present a multivariate, multi-step, and SLA-
driven approach that incorporates 20 different radio access
network (RAN) features, a custom feature set based on peak
traffic hours, and handover-based clustering to leverage the
spatiotemporal effects. In addition, we propose a custom loss
function that ensures the SLA violation rate constraint is satisfied
while minimizing overprovisioning. We also perform multi-step
prediction up to 24 steps ahead and evaluate performance under
both single-step and multi-step prediction conditions. Our study
makes several contributions, including the analysis of RAN
features, the custom feature set design, a custom loss function,
and a parametric method to satisfy SLA constraints.

I. INTRODUCTION

Mobile networks are designed to support various vertical
applications, each with unique requirements. To efficiently
manage these networks, operators must deploy appropriate
infrastructure and enhance their predictive capabilities using
machine learning (ML) and an SLA-driven orchestration. This
allows the networks to adapt dynamically to changing traffic
demands. Therefore, it is crucial to develop a well-designed
method for predicting cell-based traffic volume, which can be
used to manage the allocation of network slices accurately.

The network traffic data in mobile networks depends on
space and time due to interactions between base stations
(BSs) and daily/weekly trends in mobile data usage. Several
studies, including [1]–[5], have proposed using Convolutional
Neural Network (CNN)-based models to leverage spatial de-
pendencies. Among these studies, [1]–[3] have utilized a 3D-
CNN structure borrowed from video processing applications.
They assume that the inputs at a given time are in a matrix
format, where each entry represents the aggregated traffic of
BSs in a corresponding square grid area. On the other hand,
[4], [5] have proposed using graph convolutional networks
(GCNs) instead of a grid structure. In [4], the authors have
combined Recurrent Neural Networks (RNNs) with GCNs for
multi-step prediction. However, their proposed model performs
worse than the vanilla LSTM for the special case of single-
step prediction and about the same as ARIMA. In addition
to GCNs, [5] has proposed using handover data to improve
performance. The results in terms of Mean Square Error

(MSE) and Mean Absolute Error (MAE) reported in [5] are
10-15% better than those of the vanilla LSTM results.

Several studies (e.g., [6]–[11]) have proposed RNN-based
models that utilize the temporal dependency of network traffic
data. However, in [9], [10], where the goal is to optimize re-
source allocation using predicted traffic, evaluating the perfor-
mance of network traffic prediction is challenging. Meanwhile,
[6], [7] have also utilized a grid structure similar to [1]–[3],
while [8] has used a private dataset and cell clustering based
on the similarity of time-series trends. In a previous work [11],
we proposed RNN-based models that used handover data for
single-step prediction. However, [11] does not guarantee an
SLA violation rate.

Most literature uses standard loss functions such as MAE,
MSE, and their variants to minimize prediction error [2]–
[10]. These symmetrical loss functions treat SLA violation
and overprovisioning the same and result in nearly identical
SLA violation and overprovisioning rates. However, operators
tend to favor overprovisioning to SLA violation due to the
strict obligations of SLAs. Nearly 50% SLA violation resulting
from the use of standard loss functions is unacceptable for
operators. Therefore, designing and using application-specific
and parameterized custom loss functions are crucial.

In this paper, our main goal is to predict DL traffic volume
while minimizing overprovisioning and meeting a given SLA
violation rate. Our approach is multivariate, multi-step, and
SLA-driven, and we make the following contributions:

• We analyze 19 different RAN features, in addition to DL
traffic volume, to assess their effect on prediction.

• We design a custom feature set based on peak traffic
hours.

• We extract the spatiotemporal effect of high mobility
using incoming and outgoing handover relationships be-
tween cells.

• We perform multi-step prediction up to 24 steps ahead.
• We propose a custom loss function that guarantees the

SLA violation rate while minimizing overprovisioning.
• We evaluate our approach’s performance under single-

step and multi-step prediction scenarios.

II. DATASET AND METHODOLOGY

This section discusses the dataset and methodology used in
this study, which focuses on predicting DL traffic volume in
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Fig. 1. Cells in a metropolitan area.
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Fig. 2. Downlink traffic variation of the GU14 cell.

a live LTE RAN serving a highly dense urban area with high
user mobility. Multiple BSs cover the area, each with varying
numbers of sectors and carriers (see Fig. 1). Throughout this
study, we denote a BS with a two-letter name such as GU,
VO, etc. The cells within the relevant BS are represented using
two digits, the first being the sector and the second being the
carrier number. For example, GU14 refers to the first sector
and fourth carrier of the GU base station. Therefore, a carrier
in a sector of a BS is referred to as GU14, VO13, etc.

To improve the network’s reliability and prevent SLA
violations, the goal is to develop an ML-based prediction
method that considers unexpected traffic spikes during peak
traffic hours. For this purpose, this study uses a multivariate
LSTM architecture, which has a higher learning capacity and
overcomes the long-term dependency limitation of traditional
RNN models.

The dataset contains hourly raw data measurements over
52 weeks. In Fig. 2, we show the DL traffic volume graph of
the GU14 cell, serving a crowded city square. This cell has
a higher traffic load than others, and the trend of the service
demand changes throughout the measurement period. Thus,
demand spikes occur unexpectedly.

Table I lists collected features with their measurement
family name [12], [13]. The dataset used in this study contains
20 RAN features, with DL traffic volume (labeled F10) as
the output feature to be predicted. We split the dataset into
training, validation, and test sets with lengths of 40 weeks,
8 weeks, and 4 weeks, respectively. We normalize the feature

TABLE I
RAN FEATURES

Label Name

F1 Num. of Initial E-RABs Attempted to Setup
F2 RACH Setup Succ. Rate
F3 Avg. RACH Timing Advance
F4 Num. of RRC Attempts
F5 Num. of S1 Signalling Establishment Attempt
F6 DL PDCP Cell Thr.
F7 UL PDCP Cell Thr.
F8 DL PDCP User Thr.
F9 UL PDCP User Thr.
F10 DL Traffic Volume
F11 UL Traffic Volume
F12 Avg. UL RSSI Weight PUCCH
F13 Avg. UL RSRP PUSCH
F14 Avg. UL RSRP PUCCH
F15 Avg. CQI
F16 Avg. Num. of Active Users in DL
F17 Avg. Num. of Active Users in UL
F18 Num. of Avg. Simultaneous RRC Connected Users
F19 DL PRB Utilisation
F20 UL PRB Utilisation

sets using mean and standard deviation values calculated from
the training set. Finally, we tune hyperparameters such as
learning rate, epoch number, L2 regularization penalty, LSTM
or layer number, and hidden unit number using a grid search.

While training the model, we use the K-fold cross-validation
technique to mitigate the changing traffic levels and trends.
The number of cross-validation folds, K, is set to six, dividing
the 12-month dataset into 2-month intervals. Each fold has
different training and validation sets that are obtained by
shifting the training dataset by 2 months.

III. PARAMETRIC TRAFFIC PREDICTION

The core of our approach is a multivariate and multi-
step prediction model for traffic volume, which utilizes an
SLA-based weighted loss function. In this section, we will
present our proposed weighted loss function, as well as our
multivariate feature design and multi-step prediction structure.

A. Weighted Loss Function

We use xt to denote the traffic volume measured at time t
and x̂t to denote its corresponding prediction. During test time,
we consider SLA violations to occur when the prediction error
is negative, i.e., x̂t − xt < 0, and overprovisioning to occur
when the prediction error is positive, i.e., x̂t − xt > 0. The
SLA violation rate is defined as the percentage of instances
where an SLA is violated during test time. We also define
overprovisioning volume as the average positive prediction
error.

Standard loss functions such as MAE and MSE suffer
from two significant disadvantages. Firstly, they impose the
same penalty for both SLA violations and overprovisioning.
Secondly, they cannot be parameterized with an SLA violation
rate. Therefore, we propose a custom loss function that over-
comes both of these disadvantages of standard loss functions.
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The weighted Mean Absolute Error (wMAE) loss function
can be written as

LwMAE(x̂− x,w) =

{
w|x̂− x|, x̂− x ≤ 0
x̂− x, x̂− x > 0

(1)

where w is the weight parameter of the function. We aim
to minimize the overprovisioning volume while adhering to a
constraint on the SLA violation rate by selecting an appropri-
ate w. To this end, we explore two different SLA violation
rate scenarios, 3% and 5%, and employ a univariate LSTM
model. For each of these scenarios, we perform a line search
to determine the optimal weights, denoted as w3%, and w5%.

B. Multivariate Features

The aim of our research is to improve the performance
of our model by including additional input features beyond
the DL traffic volume. Firstly, we investigate the correlation
between the DL traffic volume and the 19 other features
monitored in the RAN. We expect that including highly
correlated features in the input dataset will have a positive
impact on the model’s performance. Next, we introduce a
custom feature set that emphasizes specific time periods during
the day or specific days during the week. Finally, to address the
spatiotemporal effect, we propose a feature clustering method,
which incorporates the incoming and outgoing handover rela-
tionships.

To compare the performance of our multivariate model, we
use the univariate LSTM model as a baseline. In the univariate
model, the input consists of an array of the past 24 hours of
DL traffic volume, and the output is the next instance of DL
traffic volume. In contrast, in the multivariate model, the input
consists of multiple arrays, each containing the past 24 hours
of a feature.

1) RAN Features: We investigate the usefulness of ad-
ditional input features beyond the DL traffic volume for
predicting cell-based multivariate traffic volume. We consider
20 different RAN features, and their labels are presented in
Table I. To identify the most correlated features, we calculate
the Pearson correlation coefficient between the DL traffic
volume feature (F10) and the other features. Fig. 3 shows an
example of the correlation heatmap for the GU14 cell. We
set a correlation threshold of 0.90 and evaluate the heatmaps
of various cells to determine which features can be included
in the input dataset. Based on our analysis, we find that
the F16, F17, F18, and F19 features are highly correlated
with F10 and should be included in the input dataset of our
multivariate model. We denote this model as mvLSTM-RAN,
which utilizes features F16 through F19 along with F10 to
predict the future values of F10.

2) Peak Features: We aim to improve our model’s perfor-
mance by addressing the issue of abnormal peaks at busy hours
in the F10 feature values. We observe that the F10 feature has
a 24-hour period for all cells, with intervals of low and high
demand for traffic volume. Moreover, F10 values tend to be
higher during weekdays and lower during weekends in densely
populated metropolitan areas. To capture these patterns, we
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Fig. 3. Correlation heatmap of RAN features for GU14 cell.

introduce a custom Boolean feature vector, “peak days of the
week,” to differentiate between weekdays and weekends in the
input dataset.

However, our initial model fails to accurately predict F10
values during periods of abnormal peaks at busy hours. To
address this, we develop a method to identify peak hours
for each cell based on daily 24-hour periods and record the
time the F10 value is at its maximum for each period. Using
occurrence statistics, we label hours with occurrence values
higher than a defined threshold as peak hours. This leads us
to propose an additional custom Boolean feature vector, “peak
hours of the day” to differentiate between peak hours from
non-peak hours.

Combining both Boolean features, we introduce our next
multivariate model, mvLSTM-peak, which incorporates the
peak days of the week and peak hours of the day vectors in
addition to F10. Notably, these additional features are derived
from the statistics of F10 and do not require any further RAN
measurements.

3) Handover Clustering Features: In this section, we in-
vestigate the impact of handovers on predicting traffic volume
in different cells of the RAN. In densely populated areas
with highly mobile users, there are dynamic changes in traffic
volume demand as users move between cells.

One approach to exploit the correlation in the handover
process is to add the features of all cells in the region to
the input dataset to predict the traffic volume feature of the
GU14 cell. However, this method significantly increases the
problem’s complexity and may reduce the model’s perfor-
mance. Another approach is to consider the traffic volume data
of only a cluster of cells around the GU14 cell. However,
we found that selecting cells in the cluster based only on
proximity and/or intersection of coverage does not improve
prediction performance, which highlights the limitations of the
grid structure of CNN-based approaches.

We introduce the Handover Clustering method to exploit
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TABLE II
THE RATES OF INCOMING AND OUTGOING HANDOVERS OF GU14

Incoming Outgoing

Cells Rate % Cells Rate %

GU12 66.79 GU12 26.86
MS34 6.08 SY24 17.24
VO14 5.69 VO14 12.48
SY24 4.68 GU17 8.72
VO12 4.45 MS34 8.31
GU24 3.36 GU24 4.54
MS37 2.05 GU13 3.96
SY22 1.99 VO12 1.88
GU13 1.49 VO13 1.88
GU22 1.15 RE37 1.55

the correlation in cell-based incoming and outgoing handover
statistics. This method considers only those cells that have
a handover relationship with the target cell GU14. Table II
presents the neighboring cells that have incoming and out-
going handover relations with GU14. Our analysis shows that
66.79% of incoming handover data to GU14 is from the GU12
cell. With Handover Clustering, we expand the input dataset
by adding two feature vectors. These vectors are constructed
by calculating the weighted averages of the DL traffic volumes
of the neighboring cells, one vector for the incoming and the
other for the outgoing handover relationship. We refer to our
next multivariate model, mvLSTM-handover, which includes
the two custom feature vectors formed through the Handover
Clustering method.

In summary, we present four multivariate LSTM models
for predicting traffic volume in the RAN. The first model,
mvLSTM-RAN, incorporates additional RAN features, while
the second model, mvLSTM-peak, focuses on the peak hours
of the day and days of the week. The third model, mvLSTM-
handover, incorporates the weighted averages of DL traffic
volumes of cells in the handover cluster. Lastly, we propose
the mvLSTM-all model, which combines all three multivariate
models.

C. Multi-step Prediction

In this subsection, we examine the performance of our
multivariate LSTM models in a multi-step prediction scenario.
Specifically, we consider 1-hour, 2-hour, 4-hour, 8-hour, and
24-hour ahead predictions and analyze the performance degra-
dation as we increase the prediction horizon.

In a multi-step prediction scenario, previously predicted
values are used as valid past values for subsequent predictions.
Therefore, the accuracy of the initial prediction is crucial in
determining the performance of the subsequent predictions.
To evaluate the performance degradation, we compare the
results of the multi-step prediction with those of the single-
step prediction.

We perform the multi-step prediction using all four of our
proposed models: mvLSTM-RAN, mvLSTM-peak, mvLSTM-
handover, and mvLSTM-all. For each model, we conduct
experiments on the same test dataset for 1-hour, 2-hour, 4-
hour, 8-hour and 24-hour ahead predictions.

TABLE III
1-HOUR AHEAD PREDICTION PERFORMANCE FOR THE GU14 CELL

Models 3% 5%

Loss Volume Loss Volume

univariate LSTM 0.50 42.61 0.44 36.92
mvLSTM-RAN 0.49 42.74 0.43 37.65
mvLSTM-peak 0.46 39.23 0.42 34.75
mvLSTM-handover 0.44 38.08 0.39 31.28
mvLSTM-all 0.48 39.55 0.41 33.23

IV. RESULTS

In this section, we provide the results of our DL traffic
volume prediction for the GU14 cell. Initially, we demonstrate
the change in the SLA-based loss and the overprovisioning
volume required for 3% and 5% SLAs. We then compare the
performance outcomes of single-step and multi-step predic-
tions.

A. Different SLA Violation Rate Percentages

In this section, we present the performance results of DL
traffic volume prediction for the GU14 cell under 3% and 5%
SLAs. Table III presents the single-step performance results
for the GU14 cell under both SLA conditions.

The results show that the test loss and accompanying
overprovisioning volume of the models decrease as the SLA
percentage increases. The weight for 3% SLA is higher than
5%, causing the loss function to penalize SLA violation cases
more severely under the 3% SLA condition. Consequently,
the model avoids violating SLA more, leading to increased
test loss and overprovisioning volume due to frequent overes-
timation of the actual values.

For both SLA conditions, the mvLSTM-handover model
performs better than the other models. Specifically, the
mvLSTM-handover model yields 12% and 11.36% lower test
losses than univariate LSTM for 3% and 5% SLA conditions,
respectively.

However, the use of additional RAN features in mvLSTM-
RAN and mvLSTM-all models resulted in more test loss and
overprovisioning compared to mvLSTM-peak and mvLSTM-
handover models. Fig. 4 illustrates that mvLSTM-RAN and
mvLSTM-all models overestimate more than mvLSTM-peak
and mvLSTM-handover models during the late afternoon
hours for 3% SLA. This leads to an increase in the test loss and
overprovisioning volume for mvLSTM-RAN and mvLSTM-
all models more than mvLSTM-peak and mvLSTM-handover
models.

B. Multi-step Prediction

In this section, we present the results of the multi-step
prediction for the GU14 cell under the 5% SLA condition.
Table IV shows the multi-step performance results for the
GU14 cell. We observe that the accuracy of the initial predic-
tion significantly affects the subsequent predictions, and the
performance degrades as we increase the prediction horizon.
As in the 1-hour ahead prediction, the mvLSTM-handover
model has the lowest test loss and overprovisioning volume in
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Fig. 4. Actual and predicted values for GU14 cell under 3% SLA.

the 2-hour ahead prediction. As the number of prediction steps
increases, the performance of all models degrades, resulting in
SLA violation when traffic demand increases and overprovi-
sioning when it decreases. The test loss for the mvLSTM-
handover model’s 2-hour ahead prediction is 18% higher than
that of the 1-hour ahead prediction. In multi-step prediction,
increasing the number of steps leads to the model doing more
overprovisioning during periods of increasing and decreasing
traffic demand. Specifically, during the evening hours, when
the traffic demand begins to decrease, we observe a lag of up
to 3 hours in 24-hour predictions. The time graph in Fig. 5
illustrates the delay in the model predictions as the number of
steps increases.

V. CONCLUSION

In this paper, we present four multivariate LSTM models for
predicting DL traffic volume for a particular cell. We compare
the performance of these models under two SLA conditions,
3% and 5%, for both single-step and multi-step predictions.

Our results show that the mvLSTM-handover model out-
performed the other models under both SLA conditions for
single-step prediction. On the other hand, the use of additional
RAN features in mvLSTM-RAN and mvLSTM-all models do
not provide better performance compared to mvLSTM-peak
and mvLSTM-handover models.

In the multi-step prediction scenario, the performance of all
models degraded as the number of steps increased. Similar to
the 1-hour ahead prediction, we observe that the mvLSTM-
handover model yields the lowest test loss value compared
to other models in the 2-hour ahead prediction. However,
when the number of steps is 4 or more, only considering the
handover relationship makes it difficult to capture the changes
in the neighbor cells of GU14.

In conclusion, our study demonstrates the effectiveness of
multivariate LSTM models for DL traffic volume prediction
in cellular networks. Furthermore, our findings suggest that
incorporating handover clustering with weighted averages of
DL traffic volumes of neighboring cells can significantly
improve the prediction performance under different SLA con-
ditions. The study recommends that operators set thresholds
for degradation compared to single-step prediction and adjust
their time horizon accordingly.
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Fig. 5. Multi-step prediction using the mvLSTM-handover model.

TABLE IV
MULTI-STEP PREDICTION TEST LOSS RESULTS FOR GU14 CELL

Models 1-hour 2-hour 4-hour 8-hour 24-hour

univariate LSTM 0.44 0.61 0.70 0.87 0.91
mvLSTM-RAN 0.43 0.49 0.56 0.77 1.00
mvLSTM-peak 0.42 0.66 0.48 0.65 0.82
mvLSTM-handover 0.39 0.46 0.57 0.89 1.07
mvLSTM-all 0.41 0.54 0.59 0.69 0.95
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